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Multivariate analysis (MVA) has slowly gained wide acceptance in the field of surface analysis since the first
examples were published some 20 years ago. In the past few years, the greater availability and lower cost of
scientific computing have resulted in a steady increase in multivariate applications. Most of the successful
multivariate methods in use today — Linear Ieast Squares (LLS), Target Factor Analysis (TFA), and Partial I east
Squares (PLS) - are quite closely related. This talk will focus on these multivariate data analysis methods which are
often referred to under the broader heading of chemometrics. In particular, factor analysis will be discussed in detail
with emphasis on the mechanics of the technique and on the practical implications.

1. Introduction

As a data reduction approach, multivariate
analysis' has slowly gained acceptance in
surface analysis during the last two decades and
many analysts now employ these techniques on
a routine basis. Most commercial software
produces analytical results which are,
unavoidably, based on information - eg.
examples of pure component spectra — provided
by the user for the samples or system under
consideration. Multivariate manipulations of
the data are also more complex than those
traditionally used for intensity measurement in
surface analysis. It is very easy to misinterpret
MVA results if the user is unaware of the
underlying assumptions and intricacies of the
techniques. It is, therefore, of great benefit to
the user to understand the workings of MVA
and this can be done without having to fully
understand the complexities of the
mathematics.

This aim of this article is to present the
fundamental concepts behind MVA without

! The term chemometrics ~ a discipline that includes MVA - is
often used in place of the term MVA.
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relying too heavily on notation and
mathematical proficiency. It should be made
clear that there are many more thorough
treatments of MVA available (e.g.) [1] and that
this article is meant to describe the workings of
MVA to surface analysts in relation to surface
analysis. The assumptions, data processing
steps, and danger areas in MVA are presented
in a way that the author hopes is easy to
understand, thereby, increasing the confidence
in the results of this type of data analysis.

2. Objectives and Assumptions

The basic assumption underlying the three
multivariate techniques discussed here is
linearity. It 1s assumed that the data (spectra)
under analysis can be described by linear
combinations of the spectra of the chemical
components in the sample, as can be
demonstrated by the construction of the
simulated “measured data” shown in Fig. 1.
The spectra in the lower portion of Fig. 1
represent those that might be recorded during a
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Figure 1 The simulated pure component spectra (top
left) and their ‘contributions’ (top right) to each linear
combination spectrum (bottom) in the simulated
“measured dataset”.

sputter depth profile of a sample composed of
the pure chemical species R; and R, in the
amounts C; and C, as specified by the
‘contribution’ profile in Fig. 1. Each spectrum,
Dy, has a composition dictated by the Cjx and
the construction of the entire dataset can be
expressed in matrix notation,

D=RC 1)

where, D contains the spectra recorded during
the experiment, R contains the pure component
spectra, and C contains the contribution, Cj, of
each R; to each spectrum, Dy, in the data
matrix. Note the assumption of linearity is
explicitly stated in Eq. 1. Given this model of
the dataset, we can now specify the objectives
of the data analysis:
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1. Determine the number of chemical species
or factors — i.e. find the number of spectral
components that vary in contribution
independently of one another;

2. Determine the identity of each component
by finding its spectrum, R;

3. Determine the contribution, Cix of each
spectral component to each recorded
spectrum; this is equivalent to calculating
the profile for each component by solving
Eq. 1.

Note that the word ‘contribution’ and not
‘concentration’ is used here; any calculated
intensities are subject to the same matrix effects
and required sensitivity factor corrections to
obtain the final chemical concentrations.

One final assumption is that we have collected
enough data to determine the sample
composition; this will be addressed later.

3. Named Multivariate Techniques

Three multivariate techniques are discussed
here. Each technique has its advantages and
disadvantages and, therefore, each has a place
in the analyst’s toolbox.

1. Classical Least Squares (CLS), also called
Linear Least Squares (LLS), allows the
analyst to quickly extract component
intensities from complex spectra with S/N
and dynamic range that are usually
improved over traditional peak height or
area calculations [1]. It also requires that
we specify both the number of components
and their spectra completely before any
calculation of contributions can be made;

2. Target Factor Analysis (TFA), essentially a
more rigorous version of CLS, allows the
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analyst to determine with confidence the
number of components responsible for the
spectral variation in the dataset and to test
each proposed component spectrum
individually [2]. It is, therefore, both more
rigorous and more flexible than CLS. TFA
also allows greater improvements in S/N
and dynamic range because of the noise
rejection inherent in the first steps of the
procedure (vide infra). As with CLS,
however, TFA requires a complete solution
before any component contributions can be

determined;

3. Partial Least Squares (PLS), a
calibration/prediction scheme, is the most
powerful MVA technique for data modeling
in that it allows the analyst to construct a
calibrated model for a particular component
hidden in a multivariate dataset without
providing the complete solution [3]. Also,
due to the calibration step, it can produce
concentrations as the analytical result. In
contrast with CLS and TFA, however, PLS
requires standard samples for the
calibration step.

This paper will address the first two techniques,
CLS and TFA, in detail since they are by far the
more commonly used in surface analysis at
present; PLS has been used mainly in TOF-
SIMS analyses as briefly discussed in a later
section.

The benefits of using MVA instead of
traditional surface analytical methods of
spectral intensity calculation can be seen in Fig.
2 where the Auger depth profile of a Aw/Ta/SiC
sample is shown as calculated by traditional
(derivative peak-to-peak) method and by CLS.
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Figure 2. AwTa/SiC sample depth profiles by traditional
derivative p-p method (left) and CLS (right).

In Fig. 2, the p-p profiles of the three sample
components are lower in dynamic range
because of S/N and spectral overlap whereas,
the application of a simple CLS fit of pure
spectra to the data produces the profiles on the
right in Fig. 2.

4. Classical Least Squares (CLS)

CLS is the simplest of the multivariate
techniques and is the most productive in terms
of results versus effort required. The
contributions to the recorded spectra of the
various sample components are given by the
following:

If D=RC (Eq. 1) then (given R)

C = R R)* RT D
@

by inversion where the first part of the right
hand side of Eq. 2 - (RTR)? R” - is called the
pseudoinverse of R when R is not square
(almost always). Eq. 2 is the prediction step of
CLS and can be used to estimate the intensity
of each spectral component, R;, in each
measured spectrum, Dy. A graphical depiction
of the procedure given by Eq. 2 is shown in Fig.
3 where the Auger basis spectrum, R, of Ta to
D46, a suspected spectrum of Ta; the fit
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Figure 3. The CLS model.

coefficient, ¢, is a scaling factor for R; that fits
it to Dy46 in a least squares sense. Fig. 4 shows
the extension of this method to the Ta spectral
region of sputter depth profile data from the
AwTa/SiC sample mentioned above. In this
case, the sample consists of relatively pure
layers of materials, therefore, the basis or pure
component spectrum is taken from the dataset
itself at Sputter Cycle 128 (in TFA R; would
be called a ‘typical’ factor [2]).

The differences between the results of the two
methods of intensity calculation are obvious in
Fig. 4: first, the p-p method suggests a
background level, which is due solely to
measurement of p-p noise, of Ta of 4216 in both
the Au and SiC layers — CLS shows Ta at 0+4 in
the same regions; second, the CLS profile is
overall smoother due to the use of the full

spectrum instead of two data channels.
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Figure 4. The Auger depth profile of Ta calculated both by p-

p and CLS methods. The inserted spectrum, R; (D125) Was

used as the basis spectrum for the least squares fit calculated

by Eq. 2.
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Common Sources of Error

- The following are the most common sources of

error in CLS (and TFA) analyses:

1. Non-linearity in the data including charge
induced spectral shifts, detector saturation
(lack of a dead time correction), and sample
decomposition;

2. Co-linearity in the component spectra,
meaning that one basis spectrum is
contaminated with another used in the fit —
this leads to instability in the calculation
and can result in large, negative values in
the calculated contributions.

Summary and Evaluation of CLS

CLS is shown by example to reduce spurious
backgrounds, extract chemically significant
results from the data, lead to a better
understanding of the sample, and all this is
done with a very simple implementation and
application of the technique.

On the other hand, we have guessed at the
number of components, have little confirmation
that the basis spectra are the correct ones, and
we have retained more noise in the data than is
necessary. These disadvantages are addressed
by TFA.

5. Target Factor Analysis2 (TFA)

TFA is a more sophisticated version of CLS
and it begins by considering the same problem
with the same assumptions. TFA is performed
in two steps: Principal Component Analysis
(PCA) produces a mathematical or abstract
solution to Eq. 1 that allows the analyst to

2 For a complete mathematical treatment of TFA applied
to the physical sciences, see Ref. 2.
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determine the number of independent
components or factors underlying the measured
dataset and; Target Transformation (TT)
rotates the PCA solution expressed in the
abstract space to a solution in a physically and
chemically meaningful space. At first glance it
appears that the abstract PCA solution, D =
RC, is simply arrived at by magic, however,
this solution too comes from the rotation of
another: the trivial solution,

D=ID )

where, I is the identity matrix and contains the
basis vectors that define a co-ordinate space
and the elements of D (the spectral data points)
are co-ordinates on the axes defined by I. In
the abstract solution, I - R and D — C where
R is a new set of basis vectors that define the
same data space with a new, rotated co-ordinate
system and C contains the co-ordinates of the
data points on the new axes in R. The axes are
rotated by a technique called eigenvector
rotation [4], which rotates the co-ordinate
system of the data space into a very convenient
orientation, as will be seen.

Principal Components Analysis (PCA)

To understand the rest of this description we
must now think of spectra in an unconventional
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Figure 5. Synthetic spectra at 200 energies. Two of the
energy axis (e; and e,) basis vectors, I, of the data space
are also plotted as ‘spectra’.
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way. A spectrum, like those displayed in Fig.
5, can be thought of as a highly compressed
representation of a point in #-dimensional space
where, n = 200 in Fig. 5. For purposes of
illustration, the spectra in Fig. 5 are reduced to
two data points and plotted against the two
energy axes, e and e; in Fig. 6. This plot
shows that each measured spectrum is really a
point, or the end of a vector, in the data space,
as are the basis vectors, I, also shown in Fig.
6.

In Fig. 7, the same plot is made for a series of
spectra from a single component system. The
points in this case fall on a straight line, as
might be expected since each spectrum is the
same shape (i.e. each data vector has the same
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Figure 6. Two spectra plotted against two of 200
showing the spectra to be points in the data space.

8;

1% +
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Figure 7 Plot of single component data set in a 2-D data
space; the ratio of intensities, i1/i5, is constant.
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direction) as all the others, therefore, the only
differences are in the relative magnitudes of the
vectors (i.e. intensities of the spectra).

This model of the data space can now be used
to determine the number of components for any
dataset. To do so, the axes of the space are
rotated so the first axis lies in a direction that
maximizes the projections of the data vectors
on it. Second and subsequent axes are found by
rotation about the first, maintaining
orthogonality at each step. Fig. 8 shows the
first two such eigenvector” axes in relation to
the data points and the original nominal axes.
Once the preferentially oriented eigenvector
axes, R, are calculated, it is desirable to use

Figure 8. The data space showing the newly calculated
eigenvector axes and their orientation with respect to the
spectra.

them to define the data space, therefore, we
need to calculate the co-ordinates, C, of the
spectra against these new axes. To do this, a
simple inversion of Eq. 1 can be used because
R is, at the moment, square, and orthonormal

(RR"=RR'=1),

3 “Eigen’ is a German word meaning ‘own’ or ‘peculiar
to’, therefore, the eigenvector axes can be thought of as
those axes that are peculiar to or that best represent the
data set. -

- 69—

Principles of Multivariate Analysis with Emphasis on ......

C=R'D @)
Note that in Fig. 8, our single component
system requires only a single eigenvector axis
to locate all the data spectra in the data space.
This fact would be reflected in the eigenvalues
associated with the eigenvector axes; the
eigenvalues indicate the total projections of the
data spectra on each eigenvector axis.

In Fig. 9, a two component dataset is displayed
in a similar manner along with the two most
significant eigenvector defined axes. In this
case, both eigenvectors have significant réle in
defining the space occupied by the data.

At this point we suspect that the number of
eigenvector axes required to account for the
true dimension of the data space corresponds to
the number of components or factors
underlying the dataset. It is now useful to look
at the eigenvectors, or eigenspectra,

\

maximum residual
variance
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maximum
variance
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\

Figure 9. First two eigenvector axes calculated for a two
component dataset. The data vectors now line in a plane
and show projections against both eigenaxes.

since they are linear combinations of the
spectra, in R and the corresponding
eigencontributions in C as shown in Fig. 10.
The first three eigenvectors are plotted in the
left hand pane of Fig. 10 and the contributions
— the co-ordinates of the spectra on the
eigenvectors are plotted in the right hand pane.
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The two most significant eigenvector axes, R
and R, show spectral intensity while R3, which
is out of plane, does not. The contributions C;
and C> show that all data intensity is accounted
for by two eigenvector axes — the third is due to
significance error in the double precision
calculations, as indicated by the scale factor on
the plot. Since the data lie in a plane, the factor
space is 2-dimensional — there are two factors
or components in the system under study.

The above discussion also indicates the need
for at least n + 1 data points in each spectrum,
where » is the number of significant
eigenvectors.

We can now see that the MV A is redefining the
data co-ordinate system: single-energy axes
become multiple-energy or full spectrum axes.
In the example above a data space previously
described by 200 single-energy axes is now
described by 2 multivariate eigenvector axes; in
the process we have determined that there are
two independently varying (in contribution as a
function of depth) components in the system.

First 3 Eigenvectors, A <
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:

o
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Gy x108

Co-ordinate on Enengy Vector
o
I <

8o "°°dr_'\‘b“_!6_’—!m—"lo
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Figure 10. The eigenvector axes (left) and the
corresponding contributions or co-ordinates of each data
spectrum on each axis (right). A nominal energy space
basis vector is also shown. The contribution vector, C3,
is due to significance error in the calculations.
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The Significant Factors

The question remains: How do we rigorously
determine the number of significant factors
required to explain the measured data? The
answer is that the model of the data, RC, must
be able to reproduce all the data to within the
measurement uncertainty [2]. An n-factor
reconstruction, "D, of the data matrix is
calculated as shown in Eq. 5.

D=RIC+RC+..+R G
5

There are several tests available [2] that allow
the analyst to determine when this criterion has
been met. However, these tests all assume
absolute linearity in the data, something that is
rarely realized in surface analysis. Therefore,
most analysts rely on visual inspection of the
residual matrix, D - "D, to estimate the number
of factors necessary. Fig. 11 shows the 1- and
2-factor reconstructions of the data matrix, D,
shown in Fig. 1.

In Fig.11, the first factor (left pane) models the
major spectral component at 390 eV reasonably
well, however, the minor component at 387 eV
is not well modeled — it requires a second factor
to accurately reproduce the data. It is important

D=RC R G

Binding Energy (eV)

Figure 11. The 1-factor (left) and 2-factor (right)
reconstructions of the data matrix, D, in Fig. 1. Note that
the minor spectral component is not very well modeled
by the 1-factor reproduction.

Binding Energy (eV)

-70-




Journal of Surface Analysis Vol. 5 No.1 (1999) D. Watson

to note that both factors are required to model
both spectral components — i.e. the factors do
not represent pure chemical components and
the abstract solution that currently exists must
be transformed to reflect the physical reality of
the sample.

Separation of Signal and Noise

One of the major benefits of the PCA step is
that the orientation of the eigenvector axes
naturally allows the elimination of some of the
measurement uncertainty in the data as argued
in the following:

If the eigenvectors are oriented in the direction
of maximum variance and if that variance is
due to spectral intensity then the minor variance
is due to noise (and unique behavior of some
spectra), therefore, the most significant
(primary) eigenvectors model mainly signal and
the minor (secondary) eigenvectors model
mainly noise or uncertainty.

Fig. 12 shows an example of a single-
component system to which some noise has
been added. The eigenvectors are oriented
roughly as before, in Fig. 8, however, we can

maximum

variance (signal)
X e /

maximum residual
variance (noise)

&y

Figure 12. The eigenvectors for a single-component
dataset + noise. In the case, the noise accounts for most
of the projections of the data onto the minor axis, R,.
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see that the projections of the data points (i.e.
the spectra) on R, are now non-zero. It can also
be seen in Fig. 12 that the eigenvectors are
averaging the spectra and this is the origin of
some of the S/N improvement: the spectra are
being signal-averaged across the entire dataset.
The 1-factor reconstruction of one of the Ta
region spectra from the Au/Ta/SiC dataset is
shown in Fig. 13 where it can be seen that the

0-5g,

=l ~

D 146

1
Dy

L—_—d——d——‘———l——
R om0 e Tew 17w
Kinetic Energy (eV)

Figure 13. Reconstruction (‘D) of Ta spectrum Dy4e.

reconstructed spectrum, D146, is a much higher
S/N estimate of the measured spectrum D46
and

will lead to a more accurate calculation of the
spectral intensity whether by the traditional
derivative p-p method (for a single-component
system) or by CLS fitting.

Defining the Real Spectral Axes by Target
Transformation

We now have a PCA model of the dataset
under examination, however, we do not have
the physical model that allows us to measure
the contributions of the individual sample
components. To do this we must transform the
linear combination eigenvector axes, R, to the
real axes, R, that represent the spectra of the
components. By doing this, we can also
transform the co-ordinates, C, on the
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eigenvectors to co-ordinates on the real axes,
thereby, determining the contribution of each

B, CLS fit
R=4,R, +1,A,7?

PN

Figure 14. Target transformation test of a suspected pure
component spectrum which attempts to find a linear
combination of R that models the test spectrum, R.

/HI

fo

component to each measured spectrum. The
procedure used to do this is called Target
Transformation [2]. Target transformation finds
linear combinations of the eigenvectors (i.e. the
eigenspectra) that approximate the known
spectra of the pure sample components. This is
done by a procedure called target testing where
the idea is to find a transformation matrix, T,
that rotates the significant eigenvectors into the
real spectrum orientations. Once found,

R=RT and C=T'C (6)

Here a connection to CLS is made — the target
tests are in fact CLS fits of the eigenvectors, R,
to the suspected pure component spectrum, Rj,
and the fit is done as in Eq. 1 and shown in Fig.
14. The resulting real spectrum axes, shown in
Fig. 15, are normmally not orthogonal which
means simply that the spectra have intensity in
the same energy or mass region.

TFA Summary and Evaluation

The advantages of TFA over CLS appear to lie
in the rigor that is applied to the determination
of the number of factors (guessed at in CLS),
the independent testing of the target spectra
(assumed to be appropriate in CLS if the full
solution looks acceptable), and the reduction of
noise giving improved detection limits. The
undesirable characteristic is that the eigenvector
modeling does not allow discrimination against
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Figure 15, The target transformed eigenvector axes and a
plot of the co-ordinates of the data spectra on each of the
spectral axes (insert).

sample components that are of no interest — a
complete solution must always be found even if
we are interested in only a single component.
This disadvantage can be overcome to some
extent by the use of Partial Least Squares

(PLS).
6. Partial Least Squares (PLS)

PLS is somewhat different from CLS and TFA
in that there is a rigorous calibration step
required before the PLS model can be used to
estimate concentrations in unknown spectra.
This requires spectra from standard samples
with known surface concentrations of the
component of interest. The major advantage of
PLS over CLS and TFA is that it is not
necessary to find the complete solution — i.e.
the composition of the entire sample — rather, it
is possible to build a PLS model for a single
component in the presence of many.

PLS is performed in the following steps [3]:

1. Calibration - the eigenvectors are
calculated but only for spectral intensity
that is correlated to the concentration of the
component of interest; build the PLS
model for the component
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2. Prediction in which the unknown spectrum
is projected against the PLS model

An excellent example of a PLS analysis using
TOF-SIMS data for the PLS model and XPS
data to arrive at calibration sample
concentration information is given in Ref. 5.

7. Summary and Conclusions

MVA techniques provide certain advantages
over more traditional methods of calculating
intensities from spectral data including better
S/N, dynamic range, and the separation of
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